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THE PROBLEM OF THE FLOW OF A PLASTIC MATERIAL ALONG A SURFACE* 

S.B. MAKSIMOV 

The equations of the perfect, rigid-plastic membrane theory of shells 
whose thickness is variable and unknown, are studied. The equations 
were studied earlier in /l-5/ for the case of a smooth surface of flow 
or for regular modes; singular modes are discussed below. It is shown 
that in the case of such modes and equations in question split into two 
systems. The first system yields the forces and the shell thickness, 
and after this the velocities are found from the second system. The 
Tresca flow conditions and the maximum reduced stress are studied as 
examples. 

An approximate model of the flow of a plastic material over the surface of an instrument 
was constructed earlier in /l/. One-dimensional problems of the drawing and pressing of 
shells in axisynrnetric matrices were studied in /2, 3/, and an iterative method of solving 
one-dimensional problems of this type was given in /4/. A number of later papers discussed 
the effect of material hardening /5/ and anisotropy /6/, and a model of a non-linearly viscous 
body was used in /7/ to study the hot deforming of shells. 

We will use the equations of the membrane theory of shells written in a curvilinear 
orthogonal coordinate system: qi(i= 1,2) are the coordinates of the principal linesofcurvature 
and ps are the coordinates of the normal to the middle surface /l-8/. 

Nij = hsij 

p,=aS,In,=h/2-aosaIn,=-kh/2, a=i,2,3 

(2) 

Here Ri are the principal radii of curvature of the middle surface, Hi are the Lame 
coefficients, and h is the thickness. 

The deformation rates are defined as follows /l/: 

In the case of a perfectly rigid-plastic material we assume that stresses oil exist in 
three-dimensional space, of the following piecewise smooth flow surface: 

F,(qj)-k,,=O, n=l,...,m (4) 

(F, are homogeneous, first-degree functions of the stresses) and the associated law of plastic 
flow (no summation over i) holds 

aFn aFn 
‘ii=ILnX ( h2=PL,= 

P,, = 0, wh& Fn < k, or F,, = k,. dF,,<O 
p,, > 0, when P,, = k,, and dF,, = 0 

(5) 

The condition of incompressibility of the material, which follows from the associatedlaw 
fortheflowsurfaces, depending on the stress tensor deviator components only, has the form 

El1 + Fp2 + FsI1 = 0 (6) 

When the friction pl,pn is given andthegecnnetry of the middle surface is such that it 
coincides, in what follows, with the surface of the instrument, then the system of equations 
(l)-(6) is closed with respect to the unkowns Nij,pa,Vi,h,p,. 
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Unlike the classical formulation of .problem on the membrane plane-stress state of a 
plate and shells, the present model takes into account the change in the thickness which occurs 
during plastic flow, and this is essential in technological problems which deal with a developed 
plastic flow of a material. An analysis of the type of the system of equations for a smooth 
surface of flow or for the regular modes was carried out in /9, lo/. 

Below we consider the following singular modes: 

Pl - kl = 0, F, - k, = 0 (7) 

which are of interest in connection with the fact that flow surfaces, piecewise linear in the 
space of principal stresses eipareoften used when deriving the solution in closed form /2-4/. 

From (7) we obtain the following expression for the forces, and the final relation for 
the thickness: 

I;,(Nij)-flBF,(Nij) =o (8) 
Fl(N..) 

/L = 2 
kl (B = Wz) 

where F,,are homogeneous, first degree functions of the stresses. 
The equations of equilibrium (1) and the first condition of (8) together form a closed 

system of equations for the forces, and the second equation of (8) is used to determine the 
thickness when the forces are known. Let us introduce the 

8% 
'tjn = 7 

notation 

The associated law (5) yields the following relations for the deformation rates: 

(9) 

When the forces and the thickness h are known, Eq.(9) forms, together with the condition 
of incompressibility (6), a closed system for the velocities vi, unlike the plane problem 
disregarding the thickness /ll/ where the singular mode leads to a kinematically indeterminate 
problem. 

The type of the system of equations for the forces depends on the sign of B = bl,s-4bllb22 

where bij = aijl - fiaiis. If B>O, then the system of equations is hyperbolic, and the equations 
for the characteristics and the relations on them have the form 

With B=O, the force equations are parabolic and we have a unique characteristic 

Hlblz +-_ 
Hz% 

H&N,, + I&,, (N,, - Nz,) + W,'%,, - PI] dq, = 0 
H,dN,, + [HI,, WI, - N,,) + 2&H,,, - PSI dq, = 0 

If B <O, then the force equations are elliptic. 
Let us consider a system of equations for the velocities when the thickness h and the 

stresses eij are known 
A,%,, = A,&,, + AS,,, a11 + %* = --e,g (10) 

The Eqs.(lO) are hyperbolic with respect to the velocities vi. and the characteristics 
and the relations on them have the form 

+ = h,,,= + (As- Ag&l/(Aa- As)a+4A,a)/3A, 

In what follows we shall restrict ourselves, for simplicity, to the case of the Cartesian 
coordinate system (H1 = H,= 1) and assume that pl=pz=O. It is then conditions of flow 
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Fn = SinGi - k,, ain = COnat , piecewise linear in the space of principal stresses 'Ji that are 
considered most often. The singular mode corresponds to the point (rl = a,*, 0, = a,* in the 
plane (see the figure). We obtain N1 - pN,= 0, p = ~,*/a,* for the forces Ni. 

Using well-known formulas, we write the expression for the 
forces Nij in terms of the principal forces 

N,, = Jo + tcosZq, N,, = p - t 60s 2~ (11) 
3 N,, = t sin 2~ 

Nl+Ns N,-N, 
PET’ t=- 2 

Here 'p is the angle between the direction of N,and the 01, 
axis. The functions p and t are connected by the linear relation 

p = Xt, B+i 
x=B_i (12) 

Thus the system of equilibrium equations and conditions (11, (12) yield a system of 
equations for the unknowns t, cp 

N,, = t (x + eos 217). N, = t (x - cos 2cp) 
N,, = t sin 29 
t,, (x + eos 29) - 2t sin 29(p,, + t, I sin 2q $- 2t cos Zq(p,, = 0 
t,l sin 2~ + 2t co9 29,(p,, + t,, (x - cos 2@ + 2t sin 29(p,, = 0 

(13) 

The type of Eqs.(13) is determined by the sign of B=x?-1. If B >O, then the equations 
are hyperbolic and the characteristics and relations on them have the form 

dq,=f/xa--l dlnt_Cdcp=O 

Choosing qrn as the new independent variables, we obtain a linear system of equations in 
canonical form 

The transformation is possible, provided that the Jacobian 

The case of I=0 yields simple integrals. If dql = dqr = 0, then cp = coast, t = const and 
the characteristics are straight lines. When dqI= 0, we find that the characteristics of 
the second family are rectilinear and dlnt=dq=O along them, i.e. z,-hpzl=f((p). If x*=1, 
then Eqs.(13) are parabolic and the characteristics coincide with the direction of one of the 
principal stresses 

In this case Eqs.(13) will be transformed to 

cp,,v.sin 2q + v,, (1 - xc08 29) = 0 

t,lx sin 2rp + t,, (1 - x cos 29) + 2tx (cos Zrg(p,, + sin Zqq,,) = 0 

The solution of this equation is given in terms of two arbitrary functions: 

We note that if the singular mode appears in the first and third quadrant (see the figure) 
then the force equations are hyperbolic, while for the second and fourth quadrant Eqs.(131 
are elliptic. The coordinate &es coorespond to the parabolic force equations. 

With regard to the velocities ui we note that the characteristics in this case are 
lines of greatest tangential stresses. Indeed, 

A, = ZdcosZq, A. = -AS = 2d sin 2~ 

bn = Q (cp 3~ n/4), d = %I% - %%I 

Thus, if the stress field is known, the field of characteristics for the system of 
equations in velocities (10) is constructed automatically. 

We shall consider, as examples, the Tresca flow conditions (the solid lines in the 

the 

figure), 
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and the maximum reduced stress (the dashed lines), most often encountered in the literature 
/IL/. The points F,B,C,E lead to a systemofparabolic force equations, and the points A,,B,, 
zt,, E, lead to hyperbolic-type equations. In case of the modes A, D, we obtain the simplest 
stress field (J,,= eX2 = f2k, 012 = 0 and h = coast. In this case A,= 0, AZ= A$=0 and since fJS = 

--& InhO, we have a unique expression %t i- %2 = 0 for the velocities, i.e. we obtain an 

indeterminate problem for the velocities just as in the plane problem ignorning the variation 
in thickness. We note that in the case of the modes A,D the dissipation of plastic energy 
W= UijEijSOq and this can only correspond to a rigid region. The points F,,C, correspond to 
the elliptic force equations and lead to the condition 

ivu + N,, = 0 (14) 
.librium Let us introducethe force function satisfying identically the equations of equi 

(1) when p1 = pz = 0: ? 

Taking into account conditions (14), we obtain a Laplace equation for the force function 
CD. Its solution for the shell of revolution qr=z;g,= EI,H,+=H~,~=O can be sought in the 
form of an expansion in Fourier series 

in which case we have 

For a circular plate the solution of (15) has the form 

cf, = 5 (a,rr( + b,r-*)sin ~e+(~~~n+~~~-~)~~~~e 
n=0 

(a*, bn, C"' dn =const) 

When N,,= v,=O,we obtain the following expression for an annular plate: 

bIt=-bzz=fk; A+, ul=c,r-cc’c-%Inr 

From the requirement that the energy dissipation is positive in the plastic region, we 
have w = oisij = fkc'c-'>O 

Thus even the simplest example shows that when the boundary conditions and plate thickness 
are specially chosen, a singular mode can be obtained. In more complex, technological cases, 
whole regions may correspond to a singular mode. Hence, when dealing with the problems of a 
plane stress state and varying thickness, we should solve the problem of conjugation for the 
piecewise smooth flow surfaces not only for the regular, but also for the singular modes. 
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EFFECTIVE PROPERTIES OF MULTICOMPONENT ELASTOPLASTIC COMPOSITE MATERIALS* 

L.A. SARAYEV 

The present paper generalizes the results obtained in /l/ to the case of 
an arbitrary number of elastic and elastoplastic components of the medium, 
by considering the elastoplastic behaviour of a multicomponent composite 
materials (CM). 

1. Consider an elastoplastic, microinhomogeneous mediumconsistingofn different isotropic 
components joined to each other with perfect adhesion. Let the first m components be elasto- 
plastic, and the remaining n--m components be perfectly elastic. Hooke's law for such a CM 
has the form 

08) = 2p, (83) - eyj(*)) + 6ijl&L (s = 1 ,Z,..., m) (1.') 

Here c+ eij, eq are the components of the stress, total and plastic deformation tensors, 

P's? h, are the Lamk parameters of the component materials, and the plastic deformations satisfy 
the condition of incompressibility e&=0. The plastic properties of the elastoplastic 
components are described in terms of the Mises yield surface (k, are the yield points) 

sijSij=k,a(s=1,2,...,m), Sij = bij - l/06ij5pp 

The structure of CM can be described by a set of random indicator functions of the 
coordinates x1 (r), xg (r). . . ., x, (r). Every one of these functions x$(r) is equal to unity on the 
set of points of,the s-th component, and to zero outside this set. Using these functions we 
can write the local Hooke's law in the form 

where 
Gij (I) = 2p (r) (Eij (r) - eij' (r)) + hijh W) e,(r) (1.21 

IL(r) = i &x,(r)? 
II 

k(r) = 2 Q,(r) 
a=1 s=1 

xa(r)eTj(r)=O (s=m+i,m+2,...,n) 

All functions x8(r), stress tensors, total and plastic deformation tensors are assumed 
to be statistically homogeneous and ergodically random fields, and their expectations are 
replaced by the following quantities /2/ averaged over the component volumes V, and over the 
whole volume V of the medium: 

Supplementing relation (1.2) with the equations of equilibrium cij,j(r)=O and the Cauchy 
formulas 2ei/(r)= u+,j(r)+ uj,i(r) connecting the components of the total deformation tensor with 
the components of the displacement vector ui(r), we obtain a closed system of equations 
describing the deformation of a multicomponent CM whose boundary conditions are that there 
are no fluctuations in the value of the quantities on the surface S of the volume V 

f wj,,,q = <f> 
Using Green's tensor 
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