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THE PROBLEM OF THE FLOW OF A PLASTIC MATERIAL ALONG A SURFACE"

S.B. MAKSIMOV

The equations of the perfect, rigid-plastic membrane theory of shells
whose thickness is variable and unknown, are studied. The equations
were studied earlier in /1-5/ for the case of a smooth surface of flow
or for regular modes; singular modes are discussed below. It is shown
that in the case of such modes and equations in question split into two
systems. The first system yields the forces and the shell thickness,
and after this the velocities are found from the second system. The
Tresca flow conditions and the maximum reduced stress are studied as
examples.

An approximate model of the flow of a plastic material over the surface of an instrument
was constructed earlier in /1/. One-dimensional problems of the drawing and pressing of
shells in axisymmetric matrices were studied in /2, 3/, and an iterative method of solving
one-dimensional problems of this type was given in /4/. A number of later papers discussed
the effect of material hardening /5/ and anisotropy /6/, and a model of a non-linearly viscous
bOd‘y‘ was used in /7/ to b\.ud‘y‘ the hot ueLU.uu.Lug of shells.

We will use the equations of the membrane theory of shells written in a curvilinear
orthogonal coordinate system: g¢; (i =1, 2) are the coordinates of the principal lines of curvature

and g¢; are the coordinates of the normal to the middie surface /1-8/.

(Nqu),l + (HyN1g),g + NioHy g — NogHyy — H\Hypy = 0 )
(HyN1g) g + (H1 Vo) g + NygHay — Ny Hy g — HiHypy, = 0
Ny Ny
’R, TR, =Ps Ny=hs; @
Pg =04y [ =h2— 03 [&s = — P2, a=1,2,3

Here R; are the principal radii of curvature of the middle surface, H; are the Lame
coefficients, and h is the thickness.
The deformation rates are defined as follows /1/:
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In the case of a perfectly rigid-plastic material we assume that stresses o;; exist in
three-dimensional space, of the following piecewise smooth flow surface:
F.e)—k, =0, n=1,...,m (4)
(F, are homogeneous, first-degree functions of the stresses) and the associated law of plastic
flow (no summation over i) holds

aF,, ar,
su:u‘n'ﬁi]_ ’ 2812:“’11@‘ (5)
p,=0, when F <k, or F =k, dF, <0
;1">0, when F =k, and @&Ff =0

The condition of incompressibility of the material, which follows from the associated law
for the £low surfaces, depending on the stress tensor deviator components only, has the form

e + £ga + €33 = (6)

when the friction i iven and the gecmetry of the middle surface
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i c
coincides, in what follows, with the surface of the instrument, then the system of equations

(1)-(6) is closed with respect to the unkowns Nij ps, i, &, pn.
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Unlike the classical formulation of problem on the membrane plane-stress state of a
plate and shells, the present model takes into account the change in the thickness which occurs
during plastic flow, and this is essential in technological problems which deal with a developed
plastic flow of a material. An analysis of the type of the system of equations for a smooth
surface of flow or for the regular modes was carried out in /9, 10/.

Below we consider the following singular modes:

Fil—k =0, Fp—k,=0 O]
which are of interest in connection with the fact that flow surfaces, piecewise linear in the
space of principal stresses o;, are often used when deriving the solution in closed form /2-4/.

From (7) we obtain the following expression for the forces, and the final relation for
the thickness:

Fl(Nij)'_BFﬂNij):O (8)

F!(Nij)
h=—7— (B=hik)

where F, are homogeneous, first degree functions of the stresses.

The equations of equilibrium (1) and the first condition of (8) together form a closed
system of equations for the forces, and the second equation of (8) is used to determine the
thickness when the forces are known. Let us introduce the notation

Ay = ayp1890 — 11303,
= 81910903 — O1930gm1
Ay = 41138155 — Gugtan

The associated law (5) yields the following relations for the deformation rates:

A12e;, = Ageyy = Agtyy 9)
By = (2081 — G1183)/ By
Hy = (ar1180 ~— @nen)/ Ay

When the forces and the thickness h are known, Eqg.(9) forms, together with the condition
of incompressibility (6), a closed system for the velocities u;, unlike the plane problem
disregarding the thickness /11/ where the singular mode leads to a kinematically indeterminate
problem.

The type of the system of equations for the forces depends on the sign of B = b2 — 4by by
where bj;= a;y — Paj. If B> 0, then the system of equations is hyperbolic, and the equations
for the characteristics and the relations on them have the form

‘,Zj =7~m=%}(—buiI/F)/2bzzy m=1,2

by H\2H ANy — bygHy\ Hy®hn@N g -+ [0y HY P (Hy y (Nyy — Nyp) -+
2N1oHy o — HiHypy) — Myl Hy (Hy g (N1 — Nog) + 2N1pHpy —
HyHypy)l, dgy = 0

With B =0, the force equations are parabolic and we have a unique characteristic

dg: Hibys

dq =h= H by
HydNyy + [Hyy (Nyy — Ngy) + 2NppHy 3 — pyldgy = 0
HydNy, + [H1,2 (NVyy — Nyg) + 2N12Ha,x — Peldg =0

If B <0, then the force equations are elliptic.

Let us consider a system of equations for the velocities when the thickness h and the
stresses ¢;; are known
A2815 = Bgeyy + Mgy, &1 83 = —egy (10)

The Egs.{10) are hyperbolic with respect to the velocities v, and the characteristics
and the relations on them have the form

do: _, _ M, s+ V(A — A3+ 4A.3)12
=kp= g7, (Be— BV (Az — As)* + 4A13)[24,

aq
H3Hydvy + A, H\H? dvy + [ngl’lE(L2 -+ 7«.""1132112,11;1 — A HHH | oy —

1 A fa
A HIHH y 0p + HHoles N + A dg; =0

In what follows we shall restrict ourselves, for simplicity, to the case of the Cartesian
coordinate system (#; = H,=1) and assume that p;=p,=0. It is then conditions of flow
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Fp = ajn0; — ky, aip, = const, piecewise linear in the space of principal stresses o¢; that are
considered most often. The singular mode corresponds to the point ¢, = ¢* 63=0,* in the
plane (see the figure). We obtain N, —pN,= 0,p = 6,*/6,* for the forces N;.

Using well-known formulas, we write the expression for the

X forces N;; in terms of the principal forces
f ) N A
{ N Ny=p+tcos2¢9, Ng=p —tcos2p (1)
/ /" N,y = tsin2¢
[ | & _M+Ns t_Nl—N-z
/ ) P="2 v PT T2
E’k\ / Here ¢ is the angle between the direction of N, and the Oz
AN L.//"Ev axis. The functions p and t are connected by the linear relation
N7 f+1
o p=ut, =51 (12)

Thus the system of equilibrium equations and conditions (11, (12) yield a system of
equations for the unknowns ¢, ¢

Ny =t (%4 co82¢), Ny =1t(x— cos2g)

N,y = tsin 2¢

¢y (% + cos 2¢) — 2¢ sin 29, ; -+ ¢, o sin 2¢ - 2¢ cos 209, =10 (13)
¢, 8in 2¢ | 2¢ co8 2¢¢, ; + ¢ 4 (% — co8 2¢) + 2t sin 2@, = 0

The type of Egs.(13) is determined by the sign of B=x*—1. If B >0, then the equations
are hyperbolic and the characteristics and relations on them have the form

dz, %sin 29 + Y — 1
dz, ~ 'm= 1+ % cos 2¢

dn, =Vx—1dinttde=0

Choosing wm as the new independent variables, we obtain a linear system of equations in

canonical form
oz | 9z 8zy A dzy
o~ Mo ' om Tt om

The transformation is possible, provided that the Jacobian

T T ) = S (b0
The case of J=0 yields simple integrals. If dn,=dy, =0, then ¢ = const, ¢+ = const and
the characteristics are straight lines. When dn, =0, we find that the characteristics of
the second family are rectilinear and dlnt=dp =0 along them, i.e. 23 —Asz;, =/ (9). If x2=1,
then Egs. (13) are parabolic and the characteristics coincide with the direction of one of the
principal stresses

dzxy dz,
Tz, O %=1 po=—cge, x=—1

In this case Egs. (13) will be transformed to
¢1%8in 29 + @4 (1 — % cos 2¢) = 0
2% 8in 29 - ¢4 (1 — % cos 2¢) | 2¢x (cos 29, - sin 2pp,4) = 0
The solution of this equation is given in terms of two arbitrary functions:

fa(®)
B—An=1(9), t= 55 T (T—xcos 29) /7 (@)

We note that if the singular mode appears in the first and third quadrant (see the figure)
then the force equations are hyperbolic, while for the second and fourth quadrant Egs. (13)
are elliptic. The coordinate lines coorespond to the parabolic force equations.

With regard to the velocities u; we note that the characteristics in this case are the

lines of greatest tangential stresses. Indeed,
A; = 2d cos 2¢, Ay = —Ag = 2dsin 2¢
Ly = tg (p 4= n/4), d = ay,853 — 81385
Thus, if the stress field is known, the field of characteristics for the system of

equations in velocities (10) is constructed automatically.
We shall consider, as examples, the Tresca flow conditions (the solid lines in the figure),
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and the maximum reduced stress (the dashed lines), most often encountered in the literature

/11/. The points F,B,C,E lead to a system of parabolic force equations, and the points 4,, 8,
Dy, E; lead to hyperbolic-type eguations. In case of the modes 4, D, we obtain the simplest
stress field oy = oy = +2k, 0;, = 0 and h ==const. In this case A, =0, A;= 4;=90 and since ray =
d

gy lnk=0, we have a unique expression g+ g&,=0 for the velocities, i.e. we obtain an

indeterminate problem for the velocities just as in the plane problem ignorning the variation
in thickness. We note that in the case of the modes 4,0 the dissipation of plastic energy
W = g;58;; =0, and this can only correspond to a rigid region. The points F;, (; correspond to
the elliptic force equations and lead to the condition
Kp+Np=0 (14)

Let us introduce the force function satisfying identically the equations of equilibrium

(1) when py = p;=0: .
N 1 /1 Hyy 1 1
WTUOH, ( 2 m32>,2+ HyH; Py Nu=— H, ( H; ®,2),1+
HL?
HeH,; P
t /1 Hya
No = H, ( Hy 0-1), HEEE P,
Taking into account conditions (14}, we obtain a Laplace equation for the force function
o . Its solution for the shell of revolution ¢ =2 ¢,= 0, H; 3= Hy,3, =0 can be sought in the

form of an expansion in Fourier series

=
® = 3 @, sinnb+ Dy, cosnd

=0
in which case we have
D, Hyy 00, 2 o —0 12 15
e TTHH, Toh T Pm=0 7=1,
dqy = Hydgy

For a circular plate the solution of (15) has the form

©

O= 3 (e, + bnr‘n) sin n@ - (cﬂr’1 + dﬂr‘") cos n8
ne=g

(g, b,y €0 dy = const)

When Ny, = v, =0, we obtain the following expression for an annular plate:
€1 .
Su=—cn=-4k h=—f, n=cr—ccirinr
From the requirement that the energy dissipation is positive in the plastic region, we

have — ke >0

chi]t:“-

Thus even the simplest example shows that when the boundary conditions and plate thickness
are specially chosen, a singular mode can be cobtained. In more complex, technological cases,
whole regions may correspond to a singular mode. Hence, when dealing with the problems of a
plane stress state and varying thickness, we should solve the problem of conjugation for the
piecewise smooth flow surfaces not only for the regular, but alsc for the singular modes.
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EFFECTIVE PROPERTIES OF MULTICOMPONENT ELASTOPLASTIC COMPOSITE MATERIALS™

L.A. SARAYEV

The present paper generalizes tle results obtained in /1/ to the case of
an arbitrary number of elastic and elastoplastic components of the medium,
by considering the elastoplastic behaviour of a multicomponent composite
materials (CM).

1. Consider an elastoplastic, microinhomogeneous medium consisting of n different isotropic
components joined to each other with perfect adhesion. Let the first m components be elasto-
plastic, and the remaining n» —m components be perfectly elastic. Hooke's law for such a CM
has the form

off =2, (6] — h®) + 8,k el (s =1.2,0.0m) a-h

i
PP
69 =2 15 4 £® = 1 2,...,n)
i poe3; 00 epy (s=m+1,m42,...,

Here o0ij &ij, ei}’ are the components of the stress, total and plastic deformation tensors,
us, A, are the Lamé parameters of the component materials, and the plastic deformations satisfy
the condition of incompressibility e,? =0. The plastic properties of the elastoplastic
components are described in terms of the Mises yield surface (k; are the yield points)

s 5=k =12,...,m), s;;=0,;—%8

i pp

The structure of CM can be described by a set of random indicator functions of the
coordinates x,(r), %, (r), ..., %, (r). Every one of these functions x,(r) is equal to unity on the
set of points of the s-th component, and to zero outside this set. Using these functions we
can write the local Hooke's law in the form

815 (1) = 20 (1) (&5 (F) — % (1)) + 8,0 (1)) £, (1) (1.2)
where

RO =D px @, A= kx(r)
s=1 s=1
%M ef(N=0 (s=m4+1,m+2,...,n)

All functions #%,(r), stress tensors, total and plastic deformation tensors are assumed
to be statistically homogeneous and ergodically random fields, and their expectations are
replaced by the following quantities /2/ averaged over the component volumes V, and over the
whole volume V of the medium:

n

<f>=%$f(r)dr,<f)s=~[}—-s f(r)dr <V=2,Vs>
v

v s s=1

Supplementing relation (1.2) with the equations of equilibrium o j(r) =0 and the Cauchy
formulas 2e; (r) = uy,;(r) + uj,; (r) connecting the components of the total deformation tensor with
the components of the displacement vector u;(r), we obtain a closed system of equations
describing the deformation of a multicomponent CM whose boundary conditions are that there
are no fluctuations in the value of the quantities on the surface S of the volume V

F (g =<
Using Green's tensor
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